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c wall skin friction coefficient = ——
f P
[+
pU,
* &
P E
€ turbulent eddy viscosity = =4
H
%
P static pressure = —P—z-
* k
p Uy
¢ body surface angle, see Figure 1
*
] Stokes stream function = ot S
* %< &
pL U,
*
r distance normal from centerline = L*-
L
*
Yo
r, body radius = —
L
* k %
PUL,
Re Reynolds number = -
M
*
u velocity component in x-direction = u_*
UQ
*
Ye
u, inviscid velocity at body surface = —
U&
r—
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Nomenclature (Continued)

e s
-u'v' - Reynolds stress in boundary layer = Q.S!.!il_
* &
P U,
*
x - arc length distance along body = 5;
L
=
y - distance normal to body surface = 1;
L
Other quantities are defined in the text.
e e
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Dimensional Reference Quantities

reference length

viscosity
kinematic viscosity

density

*
wall shear stress = u* 22;
W Ju

*
T

friction velocity = [{}J
p

free stream velocity
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INTRODUCTION

A second-order accurate Keller box solution of the incompressible
axisymmetric boundary layer equations has been employed by Cebeci [1)
using the Mangler-Levy-Lees transformation to avoid a singularity at
the stagnation point. Unfortunately this transformation causes a
singularity at the tail of the body making extension of the calculations
into the wake region impossible.

A second-order accurate code has been written by Hoffman [6)] which
uses non-transformed variables to solve the equations. This code is
incapable of starting at the stagnation point; therefore a complete
boundary layer profile must te input from the Cebeci program mentioned
above. With the untransformed variables the singularity at the tail {
point is eliminated and better accuracy in the solution is obtained
near the tail. !

The fourth-order Keller box method is a natural extension of the {
second-order schomue presently employed by Hoffman [6]. The term fourth- 4
order as used here refers to the truncation error in the coordinate normal
to the axisymmetric body surface. The truncation error in the tangential
coordinate is still second-order. The fourth-order scheme also uses the
non-transformed variables mentioned above and is set up to accept a
boundary layer profile from the Cebeci program at a station downstream B

of the stagnation point in the same way as the method of Hoffman. A

»

fourth-order solution provides higher accuracy everywhere for the same

1
'
‘|
!
é.
é }
1
1
r‘
f

mesh spacing or provides the same accuracy for a larger mesh spacing,
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when compared'to second-order solutions. Larger mesh spacing requires less
computer time to obtain a solution; therefore the fourth-order solution can
provide the same accuracy with less computer time in spite of the increased

complexity over the second-urder methcd.

INCOMPRESSIBLE BOUNDARY LAYER EQUATIONS

The boundary layer equations on a body of revolution for steady mean

flow, including transverse curvature effects, are [1]:

Continuity g% (ru) + é% (rv) =0 , (1)
Momentum ua—u + v*92 - .32 +%-a- [r[l_a_u - U'V']J ’ (2)

where dimensionless variables as defired in the nomenclature have been
used and the coordinate system is shown in Figure 1. The boundary

conditions are:

u(x, 0) =0 , (3)
V(x, 0) =0 , (4)
lim u(x, y) = ue(x) " (5)
y +> ®

where ue(x) is the inviscid surface velocity.

It is assumed that the Reynolds stress is related to the velocity

field by the relation

g % (6)

e e b - amd
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where € 1is the eddy viscosity. An algebraic eddy viscosity model is used
and described in detail in Appendix A. Using Equation (6) the momentum
equation becomes

ou _ _dp ) 1 20

du
+ V‘g s '5; r(l + €) -a-; . (7)

vl
S

The geometric relation between r and y from Figure 1 is:
r(x, y) = ry(x) +ycos ¢ . (8)

The term y cos ¢ 1in Equation (8) is the transverse curvature term which
is important at the aft end of the body where the boundary layer thickness
is of the same order of magnitude as the body radius.

The Reynolds number is eliminated from Equation (7), in the case of a

"thin" boundary layer, by introducing the scaled variables:

v = s 9)
Y Re
Y Re
Equations (1), (7), and (8) become respectively, ;
Ly +L =0, (11) s
X —
ay y
ug—“+73—“=-‘ip-+£—a- r(1+e)é’- 5 (12)
X - dx o —
dy ay ay
r(x, y) = ry(x) + —L cos ¢ . (13) |
v Re i i
3 |
|
;_
|
{
l.
e e tn N

e
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In order to use the box method, these equations must be rewritten in

first-order form. The Stokes stream function is introduced, defined by

N (14)
dy

The continuity equation, Equation (11), is identically satisfied by the
stream function. The Euler eqaution at the body surface which relates

the pressure gradient to the inviscid surface velocity is:

dp due
& Telxk . " (15)

If use is made of the laminar shear stress, defined by

1= (16)

2R
dy
then the momentum equation, Equation (12), can be written in the following

first-order form:

rd 2 Yo S w
7 x (u” - u, ) - e T = == (ThT) 0 (17)
oy
where
b=1+¢€¢ . (18)

Summarizing, the set of first-order equations to be solved is:

Lmy=FL - -, (19)
ay
W)=, (20)
9y
2oy =1, (21)
dy

e ————— £

———

R

TN “\g F;
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The new boundary conditions become [6],
u=y =20 at y wdi, (22)

uu, as y+® (23)

DEVELOPMENT OF FOURTH-ORDER EQUATIONS

The finite-difference procedure used in solving the parabolic boundary
layer equations is the box method of H. B. Keller [2]. The first-order
form of the governing differential equations, (19)-(21), when put in
finite difference form will result in algebraic equations which relate
unknowns along line (i+l), as shown in Figure 2, to line i . The solution
along line i 1is assumed known and since the equations are parabolic the
solution at line (i+l) can be obtained. The result is a marching procedure
beginning at the initial station and proceeding downstream.

In applying Keller's box method one approximates the equations by
difference quotients about pcint P , the geometric center of the box
element, as shown in Figure 2. The derivatives in the axial direction
are second-order accurate and are given by simple centered differences.

The fourth-order accurate expression used for derivatives in the normal
coordinate is given by Wornom [3] as

- ~ B[+ L=, hif. T e 5

8541~ 85 = 3 [3j+1 +8J]+ 12 [83+1 '33]”’“‘1)'0 ’

(24)
where primes denote differentiation in the normal direction (w.r.t. y)

and h is the step-size in the normal direction given by

3

o WG ks % i

l
|
!
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E represents a matrix of the differentiable quantities from Equations

(19)-(21) given by
g = v | . (26)

From these equations the first derivative of E is obviously

o R
*mtam W o))

g = ru : (27)
T
The form of E" ,» however, is not so obvious, and becomes quite involved
algebraically. In differentiating Equation (27) one obtains terms which
contain the derivative T' . Here the turbulence model used to determine
the eddy viscosity € becomes of great significance. In the inner region
€ 1is given by
e=e jzl . (28)

where

W e

: e (29)

and where £ 1is the mixing length, also a function of y . In the outer
region, however, € 1is constant and independent of boty y and T . See
Appendix A for a more detailed description of the turbulence model.

The derivative T' may be determined from Equation (19) by using the

product rule of differentiation and isolating T' . In the outer region

B
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the value of b from Equation (18) is constant and is left as such. However,
in the inner region the value of b 1is a function of ;', and must also be
differentiated. Thus the expression for T' in the inner region becomes much
more complicated than that in the outer region. Appendix B shows the deriva-
tion of E" for both of these cases, the results of which appear below:

3 Sl e e B e TR
s 5;-(ru) + (ru) 3= © 2 9% (u UL e 3x[1+281]

4wl 2 2 T 9y 1l el f K g
3 [é R e e
g" inner = ; (30)

{ ou + rt }

"~

1 19 2 2 . g2 e . @ 2
[l+25r][% TR e T it R

|

I E
2 oI O )
<t 22 () + (ru) sod 500 (W~ a5y Bx\rb] [7

L} e
< >
5 S e 3
g" outer = L o BN, i ébT o 3%] (31)

{ou+r1t}

t ir. 9. .2 2 oY
?B'[fax(“ -ue)-abT—T-é—;]

5 4

Equations (26), (27), and either (30) or (31) are then substituted into the

finite-difference expression, Equation (24) to obtain three nonlinear finite-

9 ()

difference equations. The x terms in these equations are approximated by
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a central difference quotient, as already mentioned, making the equations
second-order accurate in tﬁe x coordinate and fourth-order accurate in
the '; coordinate. The non-linear teiws are then linearized by Newton's
method to obtain three linear finite-difference equations,developed in

Appendix C, which are shown below:

AL 1, 3%, * Bla, 3%, O, %0 4

AN
DLy, 3%, 90 F Bl %% 5t Flis, 15T 0e  g41” Slin g 0 32

AN
- A24 0, 3%a41,9 F B2 9% 3 Y O35 04,5 F D244, 5V, 341
; A
B2 00 M s PP % g T S g (33)

Adssa 1 Veur 5 T By 3% gt CPiun 1 Taet g T PPea, it g

A A
+ F3 = 53 ; (34)

e 141,357 441, §41 i+1, ]

1+1,35“1+1,j+1

where the "§" terms in the above equations indicate corrections to V¢ ,

u, and T . The appropriate boundary conditions become

i o B =5
6ui+l,l L0 (36)
LPPOTRO Bl SO (37
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MATRIX FORMULATION AND SOLUTION

In order to put the equations in tridiagonal matrix form, the boundary
Conditions given by Equations (35)-(37) and the finite-difference equations
given by Equations (32)-(34) are grouped in the following fashion (i+l sub-

scripts are understood):

awl = 0
Suy = 0 i
TN A N\ A AN N\ AN
A316wl + BSléul + 031611 + D31612 + E316u2 + F31612 = S31 J
/\ Z AN AN AN N\ o S,
Alldwl + Blléul + 011611 + Dllﬁwz + E116u2 + Fllarz = 51l
A A A A A A s
A2 8y, + B2 8u, + C2,81, + D2,6y, + E2,6u, + F2,61, = 52, b 2
AN A\ AN N\
A326w2 + 8326u2 + c32612 + D326w3 + E326u3 + F32613 = sz1 :
AN /\ 1 A A N\ N\
Alj_léwj_l + Blj_ltsuj_l + Clj_ld'rj_1+ Dlj_lawj + Elj_léuj + Flj_ld"rj = 813_
A2, 8y +-€> Su +C2, .6t, .+ D2, .8y, + E2, _6u, + é> §t, = é>
=1 "3=1 3=1 -1 J=1"3-1 =1 e Law 3-17"3 h|

A3j_16¢vj + B3j6uj + c3j6'cj + D3j6wj+l + E3j6uj+l + F3j6Tj+1 = s3j

N\ A /\ 5 N\ [ N\ /\ A

AlpSyy + Bl Suy + CLeSty + DLSY , + ElgSug,, + F1 6T, 4 = Sly

N R i
AzNGqJN + BZNGuN + CZNGTN + DZNGwN X EZNGuN ' FZNGTN oy SZN (N+1)
Sty = O




-16- February 2, 1979 4
JMC:cac

By defining a 3-component column vector Z, according to

Sy
z, = Su 4 (38)

3

the preceding equations can be written as the following system of matrix
,uations: g

Alll +CZ, =R, (39)

szj-1+Aij+Cij+l=Rj e T R (40)
Bpa®s M e ™ P o (41) } |
:
where Aj’ Bj’ and Cj are 3 x 3 matrices as follows: ;
r1 0 0 i
= 0 “
Al A }5 93 s : (42)
A3, B3, €3,
= 5 e
C, = 0 0 0 3 l1<j<N - (43)
j — ——
B, B B
155 !
7o N
j-1 3-1 j~1
A A N\
By= | A2,y B2, €2, | ,223<ML,  (4)
0 0 0 !
B> ﬁ ﬁ - 5
3-1 j-1 j-1
A N\ N :
; Ay = B\zj_l ;:\21_1 ;\2_’_1 » 2< 3 <N »  (45) -
A3J B3j C3j
|
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e /\ /\
ﬁN l!lN FINT " !
P orill i , :
N "y Wy PR o (46) ~
0 1 0
and the Rj are 3-component column vectors as follows:
ro ’
R, = 0 e (47) ;
s3 ‘
1
- |
— S/}. ~ :
e £
R & (48) |
] J-1 i I )
A K
S
3
L. Al
and !
A ] ’ o
SlN 5
Al 4 !
Rver = | °%n s (49) :
il 1
Then Equations (39)-(41) can be written in the compact block matrix form:
i L=g , (50) i |
where At is an (N+1) x (N+1) block tridiagonal matrix given by

Ay oy
0

By 8y

t 3 3 =
\s:\. ™
c
4 N &N S
Bye1 Anel 4
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and Z and R are (N+l)-component column vectors as follows

Z = ; R = 5 (52)

LZN+1 i i R+l !

Because the coefficient matrix At is block tridiagonal, Equation (50)

can be solved by an efficient elimination procedure similar to that

used by Keller [10]. This procedure is presented in detail in Appendix D.

The result is a solution for each of the correction terms &y, Su, and 6T
in Equations (32)-(34).
These correction terms are then added tc¢ the values of ¢1+1 i
t ]
u1+1,j+1’ etc., in order to obtain new iterates for these variables.
The iteration procedure is continued until prescribed convergence toler-

ances are met.

RESULTS

In this paper computer solutions using the present fourth-order box
method are compared to the second-ﬁrder box solution of Hoffman [6] and
with the experimental resulté of Patel and Lee [14] for a low drag body

revolution. The body used was the F-57 body, shown in Figure 3; its

;
|
{
|
!

4"
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coordinates are given below [14]:

For 0 < x5 < x (fore-body) ,

Yo 4 3 2 2
= -1.1723 £] + 0.7088 £] + 1.0993 £} + 0.3642 £, « (53}

For X f_xo < 1 (pointed aft-body) ,

o 5 4 3 2 .
T =1 -0.11996 £, - 2.58278 §, + 3.52544 &, + 0.17730 &, t , (54)
m

where &l = xO/xm, Ez = (1 - xo)/(l - xm), X, is the axial distance measured
from the nose, r, is the local radius, X is the axial location of the maxi-
mum radius oo and all length variables have been non-dimensionalized with

* * . %
respect to L , the body length (L = 1.219m). Thus, X = xm*/L = 0.4446,

* % :
E gl /L : 0;1170. All solutions were at a Reynolds number of 1.2 x 106
U® L
where Re = —;2;—— . The experimental measurements [l14] were taken with
\YJ

the boundary layer tripped at Xy = xo*/L* = 0.475 by a circular trip wire
of 1.664 mm diameter wrapped around the body. Subsequent analysis of data
revealed that the downstream influence of such a relatively large trip
wire may have persisted up to X = 0.6 [14]. The turbulence model used

in the computer code cannot accur;tely simulate such a sudden jump from
laminar to turbulent flow; thus a transition intermittency factor has

been included as described in Appendix A. The axial distance where the

transition region should begin in the computer solution was then chosen

v

e B A 1 e
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by equating the momentum deficit area of the calculation to that of the

experiment. Following Hoffman [11] an axial station at x, = 0.3271 was

0
used in the calculations.

The pressure distribution input to the computer programs was taken
from the strong-interaction calculations of Hoffman [11]. The iterative
procedure used to generate these data is based on a correction of the
displacement body idea to represent streamline curvature effects by
means of a simple pressure mapping, and is described in Reference 11.
Figure 4 shows this distribution as a function of the axial body
coordinate.

As mentioned previously, in order to avoid a singularity at the nose
point, the computer codes for both the second- and fourth-order box
solutions, which use non-transformed variables, are set up to accept as
input a boundary layer profile at some station downstream of the nose.
The station was chosen in the laminar region at X = 0.09548 and the

profile was generated with Hoffman's second-order computer solution

which uses the Mangler-Levy-Lees transformation [6].

Integral Parameters

Calculations were made of the integral parameters Cf, ©, and H at

each axial coordinate x, where 0O is the momentum flux deficit,

0 3

© :

s ; v

u u 2

0= = [l - -u—-]r dy 3 (55) f

e e .

0 3

\ -~ B
!
|

‘."‘l

’ f
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H is the boundary layer shape factor,

§
H T (56)
6* is the mass flux deficit
*
&* - {1-ul]rdy , (57)
e

o

and Cf is the wall friction coefficient,

er
2CL = 3 . (58)

Results are presented in graphical form in Figures 5-7 for Cf, O, and
H, respectively, as functions of xo. The fourth-order calculations,
which start with an input boundary layer profile of 11 points in the
normal coordinate at an axial station of X = 0.09548, are compared
with the second-order calculations [6], starting with an input boundary
layer profile of 31 points in the normal coordinate at the same axial
station. The experimental results [141 are also shown for comparison.
Figure 5 shows that the calculated Cf agrees well with experiment for
0.6 < X, < 0.8, but disagrees sharply both fore and aft of this interval.
From Figure 6 one can see that the calculated O 1is lower than experi-
ment for the interval 0.6 < X < 0.9, but slightly higher aft of this

interval. The calculated shape factor H in Figure 7 has very poor

agreement with experiment. The reason for these disagreements is

e

!
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attributed to the inability of the algebraic turbulence model to accurately
simulate the large trip wire used in the experiment, and to the general

inadequacy of the turbulence model in the tail region.
All these figures show that agreement between second- and fourth-

order calculations is quite good; the differences between the two being

indistinguishable on most of the body.

Boundary Layer Profiles

Figures 8-10 show the boundary layer profiles at axial coordinates
of 0.601, 0.880, and 0.990,respectively. The calculated profile at Xy = 0.601
(see Figure 8) reflects the influence of the large trip wire used in the
experimental claculations; the calculated results near the wall are less
full than the experimental results. At the two downstream stations where
the effect of the large trip wire has died out, the opposite is true; the
profiles are slightly too full near the wall, as can be seen in Figures 9

and 10, for x, = 0.880 and 0.990 respectively. These discrepancies are

0
attributed to the inadequacy of the algebraic turbulence model near the

tail of the body.

In Figures 8-10 the second- and fourth-order calculations are seen to
be indistinguishable. Note that the fourth-order calculations were made

with a mesh-spacing three times as large as that of the second-order

calculations.

Computer Run Times

As mentioned previously, both the second- and fourth-order calculations
were performed on the Penn State IBM 370/3033 computer system. The net

C.P.U. time for the second-order calculations shown in the figures was

S ——

—————

»

e e -3.;‘— o

{‘— - —
q’.
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38 seconds, whereas the net C.P.U. time for the fourth-order calculations

with one-third of the number of points in the input profile was 28 seconds.

This represents a 26 percent decrease in run time for the fourth-order

method.

CONCLUDING REMARKS

A fourth-order box solution of the incompressible, axisymmetric,
laminar or turbulent boundary layer equations has been presented and,
as an example, applied to a low-drag body of revolution. For this case,
the fourth-order solution had an input mesh-spacing three times larger
than that of a second-order solution, but provided results of equivalent
accuracy and with 26 percent less computer run time. Fourth-order box
solutions of other equations have also been found to provide the equiv-
alent accuracy of second-order solutions with fewer mesh points and
requiring less computer time. For example, Wornom [3] has achieved such
a result for the two-dimensional stagnation point solution.

One disadvantage of the fourth-order box solution presented here
should be noted. The solution sometimes has greater convergence
difficulties at the outer edge of the boundary layer than does the
second-order solution with the same input conditions. Convergence
problems have been noted for solutions with very small mesh-spacing
or with smaller convergence tolerances. These problems were especially
prevalent when the one piece turbulence model of Glowacki [12] was tried.
No convergence problems were encountered with the second-order method

using this model, but the fourth-order method would not converge to a

T

O R 1 U ST 5 0 o T

of i ale
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solution aft of axial coordinate X = 0.880. The reason for this behavior
is not known; one possibility is that because of the increased complexity
of the fourth-order coefficients, numerical noise is amplified as these
coefficients get very small at the outer edge of the boundary layer.
This problem requires further investigation .

Other fourth~order accurate methods are available which have not
been considered in this paper. See, for example, a comparison of higher-
order solutions by Rubin and Khosla [13]. On the other hand, spline
methods may provide the same advantages as the fourth-order Keller box
method, but with much less algebraic manipulation (a quantity of great

abundance in the method presented in this paper).

— e
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Appendix A

Algebraic Eddy Viscosity Model

This appendix describes the details of the algebraic eddy viscosity
model and treatment of the transition region. In this model the boundary
layer is divided into an inner (law of the wall) and an outer (law of the
wake) region; each region has its own equatioh with the junction between

the two occurring when €y M€

Inner Region

The inner eddy viscosity used is that of Crawford and Kays [5] as
‘modified by Hoffman [6] for a thick axisymmetric boundary layer. The

final form is

€y = Re3/2 22 f— 3_2 s : (A.1)
o '9dy
where 2 is the mixing length given by
| ¢ : |
L =0.41Y [l - exp [— jj] 5 (A.2)

and Y is the modification for thick axisymmetric boundary layers mentioned
above and is defined as

r
0. L IF
. cos¢ i r, ¢! : : (A.3)

A is the sublayer thickness parameter; in universal (law of the wall)

variables,

A" = A Re u ; (A.4)

where u. is the dimensionless friction velocity given by

% - -
uT - [%‘Cf ] ’ (A-S)

*
and Cf is the skin friction coefficient based on U,. The empirical

formula of Crawford and Kays [5] is used for the sublayer thickness

parameter, which for an impervious wall is
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+ o
LY T
iR AR (A.6)
% 1.0+ aP iy
where A fo is the flat plate value of A" = 26.0,
30.175 if PT <o
2=120.590 1f PT >0 , (A.7)
u du
and ) L= (A.8)
dx
Re u

The above expression for A+ was derived from‘data for equilibrium
two-dimensional boundary layers. In a rapidly changing pressure gradient
the boundary layer does not instantaneously adjust to a new equilibrium
state. 1Instead, it tends to lag in its adjustment; to allow for this lag
Crawford and Kays [5] have introduced a lag equation given by

+ A : :
Paer & =T 4 (A.9)

dx T H
- +
where T is a time constant, P+eff is the effective value of P to be

+ . + :
-used in the relation for A (Equation A.6), and P is the local value

+ -
of P as given by Equation (A.8): The value of T used is Hoffman's
modification [6] of Crawford and Kay's suggestion [5] which is

T = 4000

g . (A.10)
x T

Equation (22) is solved by using centered differences and defining

+
g P ’
RAE S g (A.11)
to get the finite-difference form
Ax -
+ 1 i) + . +
g " Bx [[1 2T ] Perr, * 0%y P1+1/2] : (4.12)
1+1 [1 4 1] 1 ¥
2T:l+1

Equation (A.12) is an iterative equation because of the term T1+1' so that each

time the vector of unknowns at (i+l) is updated in solving the non-linear

finite-difference equacions'of motion, Equation (A.12) must also be updated.
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Outer Region

In the outer region of the boundary layer the eddy viscosity is
taken to be constant using the form suggested by Clauser which when

non-dimensionalized becomes [7]

* .
€, = Re au, Gk > (A.13)
. ;
where Gk is the kinematic displacement thickness given by
* 1 u B
e R e o
= /Re Ye

and a is a dimensionless quantity which accounts for low Reynolds number

effects. Cebici has obtained the following expression for o [8]:

1+ T
o e BT : (A.15)
where
a = 0.0168 5 (A.16)
LA 0.55 s ; (A.17)
=T [1 - exp (-0.243 ¥V Z -0.29821)] s (A.18)
.Reek
z1 -~ 1 - (A.19)
and Ree is the kinematic momentum thickness Reynolds number defined by
k .
Re, = 5 (A.20)
ek Re ek ue
where
ek-—l-f_ﬂ— [1-9—] ] (A.21)
/Re 0 Ye Ye
Note that when Ree < 425, the argument of 7 in Equation (A.18) becomes
k

imaginary. For this case one sets T to zero.

e A, A S i i3 i
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Since an algebraic eddy viscosity is used to model turbulence effects

in the boundary layer, there is no built-in transition region. From an

empirical curve fit discussed in Reference 6 a point is picked along the

body where turbulence is "switched on,"

or tripped.

It is not realistic

to model the transition region by simply preceding from laminar to

turbulent flow in one streamwise step. Therefore to account for the finite

distance required in the transition region for the boundary layer to become

fully turbulent, an intermittancy factor P is used to reduce the intensity

of the turbulence parameters. This factor, from Chen and Thyson [9], is

given by
3
Yoi 1 - exp(-g u, I1 IZ)
where
2
Re -1.34
8 = 1200 ‘e o'ty )
tr
x
d
Il [ r g
5 ®
tr
x
P
" I u ?
. » e
tr
Re =Reu X i
x e ‘tr
tr

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

The trapezoidal rule is used in the computer code to evaluate the running

integrals I1 and I,. The eddy viscosities in the transition region are then

2
miltiplied by o to give
Cder = %1 Ter 0
(eo)tr = & Yer 7

(A.27)

(A.28)
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Appendix B

Differentiation of Vector g'
This appendix describes in detail the differentiation of the vector E' with

respect to ;'to find E" in both the inner and outer regions of the boundary layer.

-

Inner Region

Equation (27) can be written in component form as

' Y ra ,2 12
g ax | - 2 3x (u Ye ) 2 (B.1)
5' =™ (8.2)
gy' =T . (B.3)

Differentiating Equation (B.l) yields

]
P | RS THRSRE el RE NS SR [ I O
g [3 :, X ® 3 ox (u Ye > * ax(“ e )

x 2 . (B.4)
Using Equations (20)-(21) simplifies the above equation to
" a
g =-T 5;-(ru) + (ru) §£-+ %-%;-(uz - uez) - %¥ A (B.5)
where from Equation (13),
a=r's= %%%% . §iohk (B.6)
/Re -
The second component of E" becomes
£ g," =au+rr |, (8.7)
and the third component becomes
" L .
gy =71, (B.8)
To evaluate t' the product rule is applied to Equation (19) to get
' ' =23 2.,
rbt' + rtb' + abr 2 m (u u, ) n i (B.9)
Differentiating Equation (18) and substituting Equation (28) yields
b' =g't + st' |, (B.10)
where
gl t/|t] ey

G e Sl Ju vy
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Thus, by substituting Equation (B.10) into (B.9) and isolating T’',

the following expression is obtained:

PRI T L e S R & e S Sy e
B T L (1+2s7) [2 ax (u e ) &5 £ g (8.12)

The value of T obtained above must be substituted into Equation (B.5) to

give
L[y _3_ ﬂ- E'a—- 2- 2 ’ﬂ
g L R e o el e B
o2 2 3 2
[l+§sr] [%‘%; M - %'53'- S'Tz 2 %.T 2 %.St ] i

Combination of Equations (B.13), (B.7), and (B.12) yields the final

form of‘g" as given by Equation (30).
inner

Outer Region

In the differentiation of E' in the outer region it becomes apparent
that Equations (B.5) and (B.7) still hold. A different expression for
7' must be developed however because the eddy viscosity in the outer region
is now a constant. From Equation (18) it is seen that b is also a constant;

Equation (19) then becomes

' 2Bl t® cu ™ ey
rbt' + abt T e (u u, ) -1 B 2
which feads to
o 1 |r 3 2 2 1)
- '--——- | — — - - -
g3 T - [é = (u u, ) - obt - 1 ax] . (B.14)

Substitution of Equation (3,14) into (B.5) results in the following

expression:
By My %—x- (ru) + (ru) g—:+ %%{- s - uez) o %}‘% [#.] [%_g_;
(Uz-uz)-ubr-r-al] o L5
e ax ;
Combination of Equations (B.15), (B.7) and (B.l4) yields the final form of
;"outer as given by Equation (31).

% e s
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Appendix C

Derivation of Finite-Difference Expressions

This appendix describes in detail the derivation of the three linear
finite-difference expressions given by Equations (32)-(34).

The first step in the derivation is to substitute Equations (26), (27),
and either (30) or (31) into Equation (24) to‘obtain a set of first-order,
nonlinear finite-difference expressions for either the inner or outer
regions of the boundary layer. The inner layer is considered first; these

expressions become

2 2 'hj ) r
(r'r)j+1 + (rst ):‘+1 - (rr)j - (rst )j - il' [-Tj+1 e (wj+l) + {5}j+1

2

2
B2 2 - S S TR O Sl e 8
i g 9P e ) 4 [2];1 el Sl )] * 19 Ty+1 ox

3 o 9 2 2 ) 1
(ru)j+1 * (ru)j+1 = (Tj+1) bt (u any ~ Ya r = > ("’34-1) [1+§st]j+l

2 2 T 2 bl {a
[Ela_xA (uj+1 - ) - [;]jﬂ ™ ('bjﬂ) - (s't )j+1 - [r T]j+1 -

2 d ' d a 3 2 2
[E-ST ]j+l] + Tj r (ru)j - (rﬁ)j i~ (Tj) - 5'3;'(uj o ) +

Oy o ENL SR e TSROSO NN O s
5;(' (lpj) [1+2ST]J' [2 X (uj ue ) [r]j 9x (‘pj) (S - )j [r T}j

[g 812] ] il (C.1)
) 4 j / A

=2
=

2
wj+l - wj - EJ- Bru)j+1 + (ru)j] + i%—- [auj+1 + (r'r)j+1 -

auy - (r'r).1 ] =0 K . (C.2)
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and

2
uj+1 - uj - %1 (t.,, + 1.) + hi [ .l ]

T a_ L ' 2 _ |« - |« 2 i .__1_ :_l.a_
[r]'jﬂ i Vgt - (e't ) 541 [1' T}j-i-l ; [" T ]j+1]' [1+ZST]J' [2 g

2 2 Tt 9 2 o o 2
(uj =i ) - [;}j 3;'(¢j) - ‘s'r )j - [; T}j - [; st ]J

Consider Equation (C.2) first. Since there are no x-derivatives it can be

] = 0. (C.3)

evaluated at (i+l, j+1/2) which corresponds to point Q in Figure 2. Equations
(C.1) and (C.3), however, contain x-derivatives which are approximated to

second order by using central differences, and the expression-is evaluated at
point P in Figure 2, (i+l1/2, j+1/2), the center of the box element. The

resulting expressions are quite lengthy and will not be shown here. - However, some

examples of terms which appear in Equations (C.l) and (C.3) appear below:

9 S )

x (V) = Bx, Wig,5 ~ Y4,9> (C.4)
2 1 v 2 v 2

S'T i+1/2'j+1 = -E [(S T )1+1,j+1+(s T )1’j+1]. (C,S)

As stated previously, the boundary layer equations are parabolic,

.

that is, there is no upstream influence so that the solution is obtained

by marching downstream. Thus, only the vaiues along the station (i+1)

are unknown. The above expressions are nonlinear and must be linearized

in order to obtain a solution. Since Newton's method is used to solve the
finite-difference equations, the expressions are linearized about known values

at station 1 and the known boundary conditions at station (i+l), viz.

:
3
|
!
¥
3
3:
)
4
:
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(1)

Yo 2 Y :
R T R RS (c.6)
(1)
Yivi, v T Vi 0
(1) A '
Yemiag 0
(1) i
ui+1,j = ui,j s 2<j <N ,$ (c.7) 1
M _ |
Ui41,N41 Ye 2 :
and / (
|
b “ |
41,1 1,3 | |
T,y Tty v 2E3SH ) Sery B
o o !
141, N+ 1,841 ° .

i /
where j = N+l represents the grid point at the outer edge of the boundary ‘ -
layer and the superscript denotes the iteration count. The higher-order

iterates are then \ 4
(n+l) (n) (n) ‘
Yi41,5 S Mt T )
(n+1) (n) (n) -
ui+1,j " Uy, + Gui+1,j ’ > nel,2 ... (.9
(n+1) (n) (n)
141, § *Yomg . " g v

which are introduced into the finite-difference equations developed from
Equations (C.1)-(C.3), with only linear terms in the corrections being

retained in the result. After much algebra, which will not be shown

here, a coupled linear system for the corrections (6¢i+1 J(n)’ 6u1+1 j(n)’ g
’ ’

611+1 j(n)) is obtained for 1 £ j < N+1, which is represented by Equations

(32)-(34). The superscript n is understood in these expressions, and the

coefficients are given by
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ﬁiﬂ,j - (C.10)
2
h
ﬁi+1,j e T “3,— (04) > (€.11)
A h,?
LTS S "(15_ it ’ (C.12)
6\11+1’j gl (C.13)
2
h
ﬁi+1,j = Tk g T _'g— (049) (C.14)
2
o h
I e "'g" Ti+1,5+41 ° (€.15)
4 - -2
Shinr, s = Hpan,gm Y Wy, TRy (W gt (tw) i3
2
h .
e ¥, -
6 [“1+1 (“1+1,j+1 Uit gl * (441,54 (")1+1,j] » (C.16)
A e i
e’ T O Vi Bx CRgup 3 * Tq )+ [Ez;] [‘(“’“)ﬂl,j (Ty41,5 * 74,9
+ (Ho)i+1’j] : - (C.17)
A i
: 1 g
BZit1,9 = "2hy(Bu)yy 4+ "':13_ {&:] [(“’“)iﬂ,j [Zi:] L
+ Ti,j ri+1,j:| - (C.18)
A\ h h -
S : 5 y i L}
C2i41,5 = “yaq,5 ~4 (erT) gy 4 +Axi W1, ~¥4,9 + 7% [Axi

[“(Uﬂ)i_,_l’j (wi"'l,j ¥ ‘Pi,j) T (w)\)1+1’j + (z°)i+1’j -Z(IU)i,j] ’ (C'lg)

T i D
i R =W TR




N\
D2i41,q

Ty 4810 "
Qiﬂ,j ¢
T

N\
F21+1,j =

&) fe

+ 2(1:u):L j+1} - (c.22)

N\
LV 2[‘ CLOPETE, ("b‘):u-l,j] sy {' ['Ax_] [Ti+1,j+1 Wi, 541

“ ¥y, 5410

[Ti+1,j v

2
h
e S| o L S - Yl
6 [Axi} { W) g4y,541 * A (i1, 391 * Yin, g4) 2[‘1+1,j+1

(ru)

+ 2 [—-1'“1

2 1
R Ty "1+1,j+1] B, g g gt Y, g4 - [Xx‘]

2
1,94 T Ty 401 (r“)1+1,j+1] *@o)yyr,g Ry, gy gt Yi41,3)
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2
h h
b, 1 i X
bx, (Ti+1,j+l + Ti,j+1) * % Bx, “’”)1+1,j+1 (Ti+1,j+1 *
(HO') i+1 ’j+1J ’ (C. 20)
i
S B, S R S 1
2hy (Ba)yr g0 8 Bx, @)y, 44 axg) * (uh) 141, 541
1+1,j+1] | (C.21)
]
b b’ |
2T,g4 Y AGID 0 g t B, Wipr, 341 ~ Yy,54) * 5

dia1,541 Waaa 341 = Vo 540 * @D 41,541 = D4y ga

1
i

i

2
41,3 = Y4,57 * Ta 4 "‘1+1,_1] i, 0 B R Y1+1,_1)} ‘

2
i+l

»

i+l .

~/

i (l'u)i’J + Ti,j (ru)i‘l'l,j] -8 1,3 (C.23)

T
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' 8
'§1;,j = 2 (rbr)i’j+1 - (rbT)i,j - Bx, ETW)i.j+1 + (rw)i,j] X (C.24)

2
h
Qiﬂ’j =t ke o Gl S F gl (c.25)
A 58
RO W 18 .Y
g T 9em [A"i] i 5 v (c.26)
A h,?
SRR £ 3
Cp,g = 0y *+3 {su °)i+1,j *Hi g [“1+1,j (“’1+1,j "’1,:;) + xi+1,:l] g
8 (c.27)
A h
D31+1,j =- = —;'l,— (H")i+l,j+1 (Ti+1,j+1 + Ti,j+1) = (C.28)
A h,>
- s, A T 9
E31-'-].,j 2+ 3 [Axi] (Hu)i+l,j+1 ’ (C.29)
N ' n,?
A 1ol 2
B, =™~ {su V41,341 + B, g1 [“1+1,j+1 (41,541
e "’i,j+1) + >‘1+1,j+1] ’ (C.30)
N B *
831.,_1,:] = 2(_ui+1,j+1 + ui+1,j) + hJ (Ti+1,j+1 + r1+1,j) - -61—
r —_~
I.(Ho)i“'l,j"'l - (H0)1+1’j + 831,_‘] 5 (C.31)
’§3’i,j =20y g tug Dbyl by ), (C.32)
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where the various parameters in the above equations are defined by

a
141, 3 [r]1+1’j § R T e (c.33)
s - (8, B
i+l,j 2Axi r i+, § T 1,3 ~ (C.34)
2 2
LT et R ST R » (C.35)
1 r r
i [0 +8 1 .36
161,37 e Wge g A2My 4
A e (c.37)
o i+1 ~ 2 %441 T %4 o >
Hi+1,j = 1/(bi,j + ei+1,j) - (C.38)
o FRL T 5 (t +1, ) W -9, L)
PR el L e i B e o el L T R

=T ; Eb] ; . ] y ‘a ' ]
i+l,3 [[r 141, + (s T)i+1,j - Ti’j H;b]i : + (s T)i,j 5 (C.39) .

H ) s | (C.40)

Berr,g " B g ear g o ¥y

= (8%s) (C.41)

2941, § i+l,j ("’i.j 5 wiﬂ,j) ;

The outer region must be considered next. Substitution of Equations
(26), (27), and (31) into Equation (24) yields the following set of first-

order, nonlinear, finite-difference expressions for the outer layer:
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)y - R, = %l ["j+1 g? i) + %ﬂ'%{ (u2j+1 5 “ez)
2
AWy alE o2, - “e2>] + Qg-{ St o (M0 + 0,
g_x: (t541) %%; (“j+12 5 “ez) I ﬁ; Wy49) [i}ﬁ :_x (uypq? - “ez) &
SRR T OM BRI N NS YE SR T T R B

r
S (wjﬂ)] - b—ij— [Ei%; (w,® - u?y —abry v, (wj)] =0 (C.43)

Note that the middle equation in this set was left out as it is identical to
Equation (C.2) for the inner layer. Tﬁe same procedure is applied now to the
above equation set for the outer region as was applied to the inner set of
equations. That is, they are approximated in the center of the box using

central diffefences and then are linearized using Equations (C.6)-(C.9). The

(n)
i+1

(n) (n) =
5u1+1’j ’ 611+1,j ) represented by Equations (32) (3&). The form is

identical to that of the inner layer, but with some modifications to the

final result is the coupled linear system for the corrections (&Y

coefficients as shown below:

h 2

0 b e 1
Mo T et L T [Ec:] % 141, ['(‘”m.j = ¥y,9) [E;]

(T b ks (C.44)

s T T T Y i+1,j] ’

B

St
-~
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o -
A e fp % _

i1, § 2hj (Bu)i+l,j = [Axi} [Ti,j Tit1, (UAO)i-l-l,j 3

9 i+1, ] (wi-i-l,j - wi,j) (B“)i+1,j] ” (C.45)
A s By
a1 T Y3 <8P AR [Ei'] S

1
% 191,3 Waa1,5 7 ¥e,5) [‘“’Ao)iﬂ,j T Wi, "’1,3’] » (B.A46)

2

h h .
B 4 £
6\21+1’j oy Caar, g+ T,90) * 7 [A"J % 141,541 [("'i+1,3+1 = ¥5,340

1
[Ei-] Cin,g * Te,en) T Y0 i+1,j+1] ' (c.47)
{:}i+1,j & 'Zhj (5“)1+1,j+1 [Ax] [ 1,5+ T4+, 3541 + (“A0)1+1,j+1
= 299 141,50 Paa1,341 < %4 500) (Bu)iﬂ,jﬂ} ' (C.48)

2
h h
¥ 1
Qiﬂ,j = 2(rb)yy, 541 +A§Ji_ Mg, g0 ™ Ve p00) * 4 [Ei] {z(ru)i,j+1
1
90 141,541 Pi41,541 = ¥y, 540 [-(bAO)iH.,j-l-l T i Wyp1,541 ~ l"1,j+.1)]}’
(C.49)
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i
-2 [-(rb”iﬂ.jﬂ et ¥ Al LY S ‘“’"1,3] i HE]

B s

2 1
Y0 i+1,3+1 i i+l,j+1 (u i+l,j+1 & Yi+1,j-lj1) s [Axi] Y0 i+1,j * Bi+1,j

(

——

h
2 1 '
ui+l’j i Yi+1’j)] o 6 [Axi] -(00 Y0)1+l,j+1 (wi+l,j+1 - wi,j"'l) +

2
fo 111 (Waay g1 * Yin, 340) 2 [_Ti+1,j+1 Dy g T1,j+1("“)1+1,j+1]

,
* (oo Yodur,s Paaa,s = %590 “Roaay Wiggg 5+ Yy o) * 2{-ri+1’j
(ru)i’j + .3 (ru)i+1’j] " (C.50) -

A h,>

1

A31+1,j i ‘%‘ [Ax_i] % i+1,3 (Tiﬂ,j i ’1,3) (C.51)

A h,>

i Wl e (Gpfwypg .4 » SR

g W
2 i 1
S,y " =, # =5 Y5 paq. 4 [(b/\())iﬂ’j % [A—x—i-] ("’i+1,j = wi’j)] » (C.53)

2
h
1
: 6}1"'1,:] 5 —:6L [E] % i+1,4+1 (Ti+1,j+1 = Ti,j+1) s B.30)
h 2
é}1+1,j =2+ —%— (OOBU)i+l,j+1 . (C.55)
A h,2

1
14,1 = Ny - o (% ;+1,j+1{(bAo)i+1,j+1 ) [Hi'} Wge1, 541 ~ "’1,j+1)] .

v
o

(C.56)
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2
£ oy
Fga,g = vy g t Ugpg,g) TRy (g gt Ts41,5) T %
[(°0Y0)1+1,j+1 3 (°oYo)i+1,j] % 5"31,3' ’ (€.57)

) where Bi+l,j’ Yi+1,j’ A0 1+1° and gﬁi,j are defined as before and

% 141,37 (g g * Ty g) Gy g - iy o (C.58)

wons-H [, ,,)
0 i+1,j 2 ||rb 41,5 rb 1,j

2
Yo se1,3 " Py Qg By - Ay L [“")ﬂl,j P (‘“)1,1]
8, ' (C.59)
bx ) “0 141, 4 ¢

The remaining coefficients are the same as those of the inner layer.
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Appendix D

Block Tridiagonal Matrix Solution

This appendix describes in detail the solution of the block tridiagonal
mairix equation given by Equation (50).
Since this equation is block tridiagonal, L-U factorization can be used

to solve it. Following Hoffman [6],
A =LU ; L= [Bj, I, 01 , U = [o, aj, Yj] (D.1)

where I is the unity 3x3 matrix and B, a, and y are 3x3 matrices. Equation

(50) then can be expressed as the two systems
1Y =R, (D.2)

UZ =Y . -(D.3)

o, = A | (D.4)
Gp = Aj = ijj_l » 223 M1, (D.5)
‘ Byas_y = By y . 14F el (D.6)
Yj = Cj s 1 E j _<' N s (D.7)
and
o i R1 ’ . (D.8)
Yy =Ry =By ¥y, o 2 <j <N, (p.9)
L TOREE O ) TR (p.10)
uj Zj = yj - Yj Zj+1 g e EEE . (D.11)
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Because the matrices of Equations (42)-(46) are only 3x3, the linear
systems (D.4)-(D.11) can be inverted beforehand. Thus it is not necessary to use

a generalized matrix inversion routipe. Equation (D.4) becomes

g gy ,
Wl S et | (0.12)
8, 8 4

For j > 2 the bottom row of B is zero; thus, from Equation (D.6) the bottom

row of Bj will also be zero. Then, from Equation (D.5)

S Bl L IR é‘{j-l ?j-i Iﬁj-l
%1 %2 %3 | = 231-1 /§j-1 1
@37 @39 @34 i 3j B j C3j
By By By 0 0 0
- |Ban Byy By s 23 2
| i B LR N
which yields the relations
N : A &
(all)j = I;i.j__l - (813),'] D?j-l E
(agoly = Rl (133 ’iij-l ’
(0,904 = e (By3); izj-l ’
(ag))y = I,’fj-l = (Bys)y 333-1 >
(a90)y = B2, ) = (Byy), B3, ) (D.13)
(°‘31)j = A3j .
A
(a32)j = B3j :
A
(a33)j = C3J Ry :

B L

P —
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For j=N+1, Equation (D.5) becomes
N\
i b B L T %N E%N QN
@1 %2 %3 = | Dey E2, F2,
a a a 0 1 0
n B Ta
11 B12 Bys 0 B @0
Ba1 Baz By3 0O 0 0 (D.14)
{° L e . 65N 1'{gu §\3N ’
which yields
) s - A i
“er % %23 %2
SRR W ) , (D.15)

where the first two rows are the same as Equations (D.13) with j = N+1 and
j-1=N. Only the last row changes and is given by Equation (D.15). __
Two cases must be considered for Equation (D.6), namely, j=2 and

2<3 <N Por j=2,

0 AR &
1P f5 P e e e v W
Wiy Wt o TR, = 10 BB : (D.16)
|P2 P22 Pzl A A T
o o °_Jz A3, B3, 3, Q650
which yields the solutions
(8190, = ('ﬁl 81 " 6}1 AI)MZ v \
8 208

(8130, = CL,/8, o s

(85905 = (:21 el - B3 &1)“‘2 ’

(By3), = C2,/8, )
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where
N\
8, = €3,
For j > 2, Equation (D.6) becomes
11 B2 By % %2 %3 : ‘{,\\13-1 By ,>j-1
21 B22 B3 %1 %22 %3 PP P | O
0 0 0 i @3y G35 Og3 e 0 0
which gives
A A
(B34 = [(ﬂ %22 %33)321 ¥ (Cl.ay; a55) 4y + (Bl oy a50),4
I ; A A
- (Clagyeg)yy - Alagy agy)yy = Blay aggdey |78,
A N A
(B)2)y = [(Bl 91 %3305, * (Al ag; ay5), , + (CL °‘31 %1951

- (g} o a

31 M13051 O g )., -
A A
(B)3)5 = [(é} %11 %220 5-1 F (Bl agyy 0y3) 5 + (Al ey, 0p9),
A A
- & %22 913051 = (Bl agy ay3) 4 - (Cl oy, O‘21);1-1] /a5
A
(By)y = [‘ﬁ %92 ®33)59 * & %1 320451 * (B2 ay5 a5)4
N N N
TVl B Sy leay R Bgy gleuy < VN By “33);|~1]/Aj ’

(K} a

33 12)j 1] /Aj ,

February 2, 1979

(By)) = [(‘/’\2 %31 %3304 + & %32 %3041 . & %33 %2741
I - @ %31 %3)5-1 - & 932 %144, - @ %33 “12)3-1]“‘1 ,
| .
; (By3)y = f“’:} %1 2zj1+(g\2°‘21 1331*‘9“12 %230 5-1
f - R o %2 %1341 - @ %11 23 =1 - @ %2 °‘21)j 1]“1 ’

(D.18)

(D.19)

‘W

}(n.zo)
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31 %12 “23)j-1

= gy 9 Syahay ~ Gy S Bahia = B % %galia ip21)
Next, solve Equations (D.8) and (D.9) for yj. Now
Y1 j
y__l = |Y2
(D.22)
Y3 3
Hence, Equation (D.8) yields the three relations
(Yl)1 wel Qe
s v (D.23)
(Y3)l = S31 .
Equation (D.9) reads
b é%j-l-] {fsll %2ty {iYI-}
Y2 = |82, - Boq Buyt Bus %2 | (D.24)
Lyzj -s3jJ o @0 iy Y3Jj_1
Upon expansion, for 2 < j < N+1, the solutions are
Y1), = 4 (Y2) (B.q) . (Y3)
AN '
(¥2), = 82, ) = (8,)); (YD), ) = (Byp)y (¥2), 1 = (Byp); (¥3),, , 3(D.25)
(Y3) - é} Y
b i
/
except that at j=N+1,
(D.26)

(Y3)N+1 =0,

i M v s A I 57 0

POy Sy
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which follows from Equation (49). Now solve Equation (D.10) for ZN+1

using Equation (D.15):

@1y Sy %4 b B I
a21 22 a23 Su = Y2 . (D.27)A
0 1 0 ftw |9 e 0 1 nn ’

which upon expansion and solving for the corrections yields

: - - B
(64 = f°13)u+1 2y = @344 (Yl)u+1J/°N+1 ’

(6u)N+1 - Qe s » (D.28)
(1 = [@)m Wy = gy (YZ)N+1J/GN+1 ’
/
where
v = (@13 9210w~ (Og1 %230n k-2
Next, solve for Zj from Equation (D.11) for 2 < j < N.
B
@7 %2 %43 Sy Y1 0 0 0 ]
%1 %22 %23 el Tebae P e 2§ SRR | L (D.30)
@3y O35 CGgq 3 St b Y3 j i E3j F3j 6t f41
vwhich yields the three equations for the correction vectors
(tS‘p)j = [(Yl )9 a33)j + (r3 @9 “23);] + (Y2 u1.3 a32)j \
- (r3 5y a13)j - ATk %yq °32)j - (Y2 a5, 033)1 /Oj >
(6u)j = [kYZ @7 033)j + (Y1 ays 031)j + (r3 a3 a21)j
& ] (D.31)
- (Y2 4 a31)j (r3 @11 a23)j - (Y1 a5y a33)j /¢j . >

(Sr)j = Fr3 a5 °22)j + (Y2 @, a31)j + (Y1 °2} “32)j

- (Y1 4y, a31)j - (Y2 o

11 %3203 = (r3 055 @341/,

e ———— oA —

T

T




o February 2, 1979
JMC:cac

where

= .
3, = (Y3)j - 6§j (8v) - E3, (du) é§j (61)j+1 > (D.32)

3 j+1 j j+1 T

and ¢, is identical to A

3 341 as defined by Equation (D.21), or,

0, = (o) app ag3)y + (@15 Ap3 @3y) 5 + (015 0py a3) 5 = (B;3 3y a5y)4

- (al2 %5 a33)j = Aj+1 . (D.33)

= (ayy @p3 939)4

Note; Equations (D.31) hold for 2 < j < N. For j=1, use Equation (D.12) to get

1 0 0 Gwl 0 0 0 0 Gwz
0 1 0 Su = 0 0 0 Su s (D.34)
B & 61l s e R
T o W 1 0 1 R L
which yields the solutions
b
6"’1""0 s
Su; =0 , ) (D.35)
. 611 = r31/A2 5 ;

where r3 is given by Equation (D.32) and A, by Equation (D.18).

2
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